ProtaStructure® ProtaSteel® ProtaDetails® ProtaBIM®

Nowe możliwości

ProtaStructure Suite 2022 – Co nowego

Draft Version: 2.0

22 Październik 2021

W sprawach wsparcia technicznego i szkoleń prosimy o kontakt pod mailem:

pomoc@protabim.pl

Ograniczenie	Chociaż Prota dokłada wszelkich starań, aby każda nowa aktualizacja
odpowiedzialności	była testowana, Prota nie ponosi odpowiedzialności za jakiekolwiek
	straty spowodowane błędami dokumentacji, oprogramowania lub
	użytkowania.

Oprócz warunków umowy licencyjnej Prota użytkownik jest odpowiedzialny za:

• sprawdzenie wyników generowanych przez dokumentację i oprogramowanie,

• upewnić się, że użytkownicy oprogramowania i ich przełożeni mają odpowiednie możliwości techniczne,

• upewnij się, że oprogramowanie jest prawidłowo używane zgodnie z instrukcją i dokumentacją referencyjną.

- WłasnośćProtaStructure jest zarejestrowanym znakiem towarowym Prota YazılımintelektualnaBilişim ve Mühendislik A.Ş., a wszelkie prawa własności intelektualnej
należą do Prota Yazılım Bilişim ve Mühendislik A.Ş. Zabrania się
kopiowania, rozpowszechniania i używania dokumentacji, podręczników
szkoleniowych i referencyjnych oraz jakichkolwiek składników programu
z naruszeniem umowy licencyjnej.
- Znaki towaroweProtaStructure®, ProtaDetails®, ProtaSteel® i ProtaBIM® są zastrzeżonymiznakami towarowymi firmy Prota Software Inc. Logo Prota jest znakiem
towarowym firmy Prota Software Inc.

Zawartość

Nowy zintegrowany moduł płyty i fundamentów MES	7
64-Bitowa architektura	7
Pojedyncza reprezentacja danych	7
Ulepszona wizualizacja	7
Nowy menedżer analizy płyt MES	8
Wykresy pasm płyt	9
Ulepszona wydajność i wykorzystanie pamięci	11
Nowe narzędzia w wymianie danych BIM	11
Dwukierunkowa wymiana danych z plikami SAF	11
Poprawiona integracja z oprogramowaniem Revit	11
Usprawniony interfejs użytkownika i okna dialogowe	11
Poprawiona wymiana danych analitycznych z SAP2000	12
Wyniki analizy w formacie CSV	12
Rozszerzona biblioteka norm	13
Nowe normy sejsmiczne i obliczenia	13
Obciążenia sejsmiczne działające na elementy niekonstrukcyjne	13
Projektowanie sejsmicznych separacji	14
Obliczanie przemieszczenia docelowego w analizie zniszenia	14
Wzmacnianie i ocena z CFRP	15
Statyczny i dynamiczny napór gruntu na ściany kondygnacji podziemnych	15
Udoskonalone i rozszerzona kontrola wytrzymałości słupów, belek i połączeń	16
Automatyczne obliczanie obciążeń śniegiem	17
Nowe możliwości modelowania	17
Parametryczne elementy stalowe kopuły	17
Zakrzywione i łukowe elementy ramy	18
Dzielenie i łączenie belek i elementów ramowych	18
Ulepszenia dla stężeń	18
Rozszerzona biblioteka przekroi stalowych	19
Nowe możliwości interpretacji wizualnej	19
Nowa metoda wstawiania płyty: Wskaż zamkniętą obwiednię płyty	19
Dostosowanie i nowe funkcje w systemie jednostek	20
Wsparcie dla jednostek imperialnych	20

Bezproblemowe przełączanie między systemami jednostek	20
Więcej szczegółów: znaczniki poziomu, długość analizy i jednostki przemieszczenia	21
Ulepszenia w kwestii materiałów	22
Nieograniczone znaki adnotacji zbrojenia	22
Imperialne etykiety zbrojeniowe do projektowania metrycznego	22
Nowy interfejs dla materiałów zbrojeniowych i dostępności średnic	22
Właściwości betonu zależne od czasu	23
Nowe narzędzia do obciążania elementów 3D	25
Przypisuj obciążenia w dowolnym kierunku i wizualizuj w 3D	25
Wizualizacja obciążeń	25
Przypadki obciążenia dachowego, śniegu i deszczu	26
Przypadki obciążeń zdefiniowanych przez użytkownika i obciążenia wymuszone	26
Obciążenia ręczne na połączeniach kratownicy	27
Nowe metody analizy i systematyka analizy	28
Zarządzaj wieloma analizami w tym samym czasie	28
Interakcja grunt-konstrukcja	28
Analiza etapowa konstrukcji z pełzaniem i skurczem	29
Opcje eksportu modelu analitycznego	29
Analiza postprocesorowa	
Pojedynczy zintegrowany postprocesor dla wszystkich wyników analizy	
Analiza płyt MES a analiza budynków w post-procesie	
Oddzielny filtr dla kondygnacji posadowienia	32
Zunifikowany silnik MES	32
Podświetlanie powłoki	32
Powiększenie węzła	
Schematy płyt stropowych	33
Nowe możliwości w projektowaniu elementów	34
Rozszerzony zakres norm dla projektowania belek żelbetowych	34
Nowe wzory zbrojenia belek	34
Zmodyfikowany edytor zbrojenia belki	36
Usprawneinia w wykresach sił elementów	36
Nowy interfejs projektowania dla płyt i fundamentów	37
Projektowanie kopuł stalowych	37
Sprawdź projekt pod kątem strzemion słupów zdefiniowanych przez użytkownika	37
Nowe raporty	

Kompleksowe raporty projektowe płyt	39
Zintegrowany raport fundamentów	
Szczegółowe raporty z wymiarowania belek żelbetowych	
Raport obciążeń elementów	
Raport grubości i typów płyt	40
Raport właściwości elementu	40
Ulepszony raport wyników analizy	41
Zoptymalizowany raport stopy fundamentowej i pali	41
Raport dotyczący zakłądu prętów zbrojeniowych i długości zakotwienia	42
Ulepszone zestawienie w przypadku ścian szkieletowych	42
Zakłady i łączniki w połączeniach belek drugorzędnych	42
Nowa technologia	43
64-bitowa architektura z ulepszoną infrastrukturą technologiczną	43
Nowy wstążkowy pasek narzędzi	43
Nowy raport projektowy: Połączenie podstawy słupa	44
Raporty z istniejących połączeń	44
Nowe makro: Połączenie kątownikiem belki i słupa	44
Nowe makro: Połączenie śrubowe płytki końcowej	45
Nowe makro: Połączenie podstawy dla przekrojów rurowych	45
Nowe makro: nieciągłe połączenie skośne	46
Ulepszona nauka o programie, użyteczność i produktywność	46
Ulepszenia grupowania, filtrowania i wyboru obiektów	46
Nowa systematyka ustawień dla całego programu	46
Modernizacja i udoskonalenie interfejsu użytkownika makr	47
Nowe kreatory makr automatycznych i ręcznych	48
Ręczne wymiary i uwagi na dokumentacji	48
Usprawnienia I ułatwienia w generowaniu dokumentacji projektowej	48
Ulepszenia i uproszczenia w adnotacjach dotyczących śrub i spoin	48
Kontrola połączenia i raport sił wewnętrznych	49
Generalne ulepszenia stabilności i wydajności	49
Dziękujemy	50

Wprowadzenie

Jako Prota od ponad 30 lat tworzymy wiodące oprogramowanie konstrukcyjne BIM.

ProtaStructure 2021, który dostarczyliśmy w lipcu 2020 roku, był ważnym kamieniem milowym w realizacji naszej misji i zaangażowania. Jak wiecie, ProtaStructure 2021 ma architekturę 64-bitową, operacje wielowątkowe i najnowsze platformy technologiczne.

Pomimo wyzwań globalnej pandemii na całym świecie byliśmy w stanie kontynuować nasz rozwój i obsługę klienta bez znaczących przerw w latach 2020 i 2021. ProtaStructure 2022 jest wynikiem poświęcenia i ciężkiej pracy naszego zespołu.

Aby zapewnić bardziej zintegrowane doświadczenie, zmigrowaliśmy nasz moduł FE Floor and Foundation do wersji 64-bitowej i zintegrowaliśmy go z głównym programem. Osiągnęliśmy poprawę wydajności do 10 razy w modelowaniu, ogólnym użytkowaniu i wizualizacji.

Wprowadziliśmy nowe kontrole sejsmiczne, takie jak obliczanie odstępów sejsmicznych, siły działające na elementy niekonstrukcyjne, obliczanie przemieszczenia docelowego w analizie wypychania i ocenę elementów z CFRP w różnych międzynarodowych normach projektowych.

W wyniku opinii użytkowników opracowaliśmy nowe raporty i ulepszyliśmy istniejące, takie jak zintegrowane raporty dotyczące projektowania fundamentów i płyt. Poza tym w projektowaniu fundamentów i płyt czeka na Ciebie bardziej wyrafinowane wrażenia użytkownika. System obciążania został przeprojektowany od podstaw z bardziej elastycznym, skalowalnym i wizualnym podejściem. Obliczenia obciążenia śniegiem są teraz wykonywane automatycznie według kodów EC i TS. Wśród nowych funkcji są jednostki imperialne, stalowe kopuły, łuki i zakrzywione elementy ramy.

Ponadto można teraz tworzyć niestandardowe wzory zbrojenia belek i tworzyć szablony zawierające zbrojenie z więcej niż dwiema warstwami. Konstrukcja etapowa, która uwzględnia długoterminowe skutki pełzania i skurczu, została również wprowadzona w ProtaStructure 2022.

Dokonano znaczących ulepszeń i wprowadzono nowe funkcje w komunikacji danych z platformami BIM. Dwukierunkowa wymiana danych SAF to najnowszy dodatek do naszego arsenału współpracy BIM.

ProtaSteel 2022 został całkowicie przeniesiony na platformę 64-bitową. Interfejs użytkownika został przeprojektowany od podstaw, promując praktyczność bez uszczerbku dla nawyków i użyteczności. Instrukcje i kreatory dostępne w produkcie zapewniają większą produktywność.

Jesteśmy pewni, że nowe funkcje i ulepszenia pakietu ProtaStructure Suite 2022 będą sprawiać Ci przyjemność. Szczegółowe informacje znajdziesz na kolejnych stronach.

Dziękujemy za wybranie ProtaStructure.

ProtaStructure 2022

ProtaStructure 2022 stale się rozwija dzięki nowym funkcjom, ulepszeniu wydajności, łatwości użytkowania i opiniom użytkowników.

Nowy zintegrowany moduł płyty i fundamentów MES

64-Bitowa architektura

Migracja technologii, którą rozpoczęliśmy od ProtaStructure 2021, jest teraz zakończona w ProtaStructure 2022 poprzez integrację modułu płyt i fundamentów MES z głównym programem. Jest to ogromna korzyść dla naszych użytkowników w zakresie zarządzania dużymi modelami, tworzenia siatek MES, praktyczności, wydajności i wizualizacji.

Pojedyncza reprezentacja danych

W ProtaStructure 2022 zobaczysz jak ważna to zmiana. Wszystkie dane analityczne pod maską ProtaStructure są ujednolicone i przeniesione na wspólną platformę. W ten sposób przetwarzanie końcowe i przeglądanie wyników jest znacznie łatwiejsze i bardziej skalowalne. W przyszłości zapewni to większą różnorodność funkcji i możliwości analizy.

Ulepszona wizualizacja

Użyliśmy nowego renderera 3D podczas integracji modułu płyt i fundamentów MES. Nowy renderer 3D jest bardziej wydajny i ma większe możliwości. Zaowocowało to lepszym renderowaniem konturów MES, wizualizacją obciążenia.

Nowy menedżer analizy płyt MES

W ProtaStructure można analizować i projektować płyty pod obciążeniem grawitacyjnym i wymuszonym tylko niezależnie od globalnej analizy budynku 3D. W tym podejściu płyta jest izolowana od budynku i przykładane są tylko obciążenia grawitacyjne i przyłożone. Pozwala to inżynierom symulować scenariusze projektowe, w których rządzą obciążenia pionowe.

Oprócz tego można przeprowadzić analizę, w której analizujesz stropy (tylko pod obciążeniem pionowym) od góry do dołu, iteracyjnie stosując obliczone reakcje słupów na strop poniżej. Ta metodologia jest preferowana przez inżynierów, którzy chcieliby wyeliminować skutki uboczne globalnej analizy 3D MES, takie jak efekty ramy 3D i osiadania różnicowe spowodowane względnymi sztywnościami osiowymi. Ta metoda symuluje stare dobre metody obliczeń ręcznych 2D w środowisku 3D.

Po wyjaśnieniu tego, w ProtaStructure 2022, przepływ pracy analizy stropów FE został ulepszony i zebrany w jednym menedżerze analizy płyt MES, w którym można zobaczyć i kontrolować parametry dla wszystkich pięter jednocześnie. Możesz także wykonywać analizy wsadowe na wybranych piętrach.

- 1. Modele analizy płyt i fundamentów MES są teraz zintegrowane z programem głównym. Koniec z odniesieniami do zewnętrznego modułu Meshgen.
- Wybierz kondygnacje z listy po lewej stronie, a następnie kliknij "Analiza i siatka płyt". Wszystkie wybrane płyty zostaną podzielone na elementy MES i przeanalizowane jednocześnie.

3. W przypadku zaznaczenia opcji "Uwzględnij obciążenia słupów górnej kondygnacji" zostanie przeprowadzona analiza ścinania, zaczynając od najwyższej kondygnacji. W takim przypadku wyświetlany jest symbol "▼" jako przypomnienie. Ta sama terminologia jest używana w innych interfejsach związanych z analizą.

Wykresy pasm płyt

Wykresy częściowe można przeglądać zarówno dla wyników analizy budynku, jak i płyty MES, jeśli przeprowadzono oba typy analizy. Profile pasm można wyświetlać jako diagramy belek, słupów i elementów ramy. Przeglądanie schematów płyt stropowych w edytorze graficznym:

- 1. Wybierz pasmo płyty
- 2. Kliknij prawym przyciskiem myszy i uruchom polecenie "Profil pasma".
- 3. Alternatywnie możesz użyć tego samego polecenia na kontekstowej karcie wstążki pasma stropu.

o 🗎	n a 🖡		Ŧ									Slab Strip	
I -	Building Setout	Modelling	Loading	Review	Analysis	s Design	Drawings & Reports	BIM	Display	Views	Help	Slab Strip	
	🗙 Delete	_ ×	_	F	₩ ~	₩ ∧							
	Heasure	Delete		Slab Strip	Strip	Etrip Profile							- 1
Floperues		Steel Bars	Steel Bars	Check Design	Profile	Report							
				L. L.	Design	1							

Aby przejrzeć profile pasm płyt w postprocesorze analizy:

- 1. Otwórz model analityczny dla analizy płyt MES lub analizy budynku,
- 2. Wybierz pasmo płyty, który chcesz przejrzeć z listy Pasma płyt w zakładce Wyniki,
- 3. Aktywuj wyświetlanie, klikając przycisk "Schematy".
- 4. Spowoduje to wyświetlenie wykresów momentów wybranych pasm na widoku analitycznym.
- 5. Aby zobaczyć szczegóły, kliknij prawym przyciskiem myszy i wybierz "Wykres pasma stropu".

Oferujemy 3 różne metody zbierania wyników, a mianowicie maksymalna, całkowa i liniowa. W podejściu "maksymalny" do obliczania wyników wykorzystywane są maksymalne wartości węzłów poprzecznych. Metoda "całkowa" oblicza całkę wyników węzłów poprzecznych, dając bardziej ekonomiczne i wygładzone wartości. Metoda ta jest dostępna tylko dla pasm o określonym zakresie. Metoda "liniowa" służy wyłącznie do celów kontrolnych i nie uwzględnia węzłów poprzecznych wyświetlających wartości dokładnie.

Ulepszona wydajność i wykorzystanie pamięci

W ProtaStructure 2022 skupiliśmy się na optymalizacji i poprawie wydajności wizualizacji, ogólnego użytkowania i zarządzania pamięcią. Osiągnęliśmy ogólny wzrost wydajności do 100x w modelowaniu w zależności od wielkości projektu. Poprawę wydajności można lepiej rozpoznać w większych projektach.

Dodatkowo, niepożądane zachowania, które od czasu do czasu można napotkać podczas usuwania, edycji i wstawiania elementów, są wyeliminowane. Analiza wydajności postprocesora w przełączaniu przypadków obciążenia, podświetlaniu i zaznaczaniu wzrosła czterokrotnie.

Nowe narzędzia w wymianie danych BIM

Integracja BIM jest zawsze głównym elementem o wysokim priorytecie w planie rozwoju ProtaStructure. Projekcja zmieniających się norm, cyfryzacja, rygorystyczne normy emisyjne i redukcja śladu węglowego w budownictwie odbywa się poprzez zastosowanie technologii BIM. Staramy się ulepszać naszą infrastrukturę współpracy BIM i wprowadzać nowe możliwości z każdą nową wersją.

Dwukierunkowa wymiana danych z plikami SAF

Prota jest częścią grupy roboczej SAF wraz z grupą Nemetschek firm Graphisoft, Allplan, Scia i innymi ważnymi dostawcami oprogramowania konstrukcyjnego i architektonicznego. W wyniku prac badawczo-rozwojowych ProtaStructure 2022 może teraz importować i eksportować pliki SAF. Format SAF jest innowacyjny w sposób, który upraszcza definicję danych obiektu i jest implementowany przez liczne programy do inżynierii budowlanej.

Poprawiona integracja z oprogramowaniem Revit

W oparciu o dodawane przez użytkowników opinie wprowadzane są ulepszenia. Zostały one zaimplementowane i przystosowane do współpracy z Autodesk Revit 2022.

Usprawniony interfejs użytkownika i okna dialogowe

Wszystkie okna dialogowe i kreatory BIM Collaboration zostały dostosowane, aby zapewnić podobne wrażenia użytkownika.

Poprawiona wymiana danych analitycznych z SAP2000

Integracja z SAP2000 została ulepszona w celu eksportu modeli płyt i fundamentów MES oprócz modelu analizy budynku. Wybrane modele analityczne można teraz wyeksportować jednocześnie.

Dane zależne od właściwości materiałów betonowych i dane dotyczące budowy etapowej są również przesyłane do SAP2000.

AP200	00 Analysis Model Export				
Build	ing Analysis		SAP2000 - Version 7 Data File E	xport	
 Image: A second s	Building Analysis Model	07/08/2021 13:19:40	SAP2000 - Version 9 Data File E	xport	
FE St	orey and Foundation Models		SAP2000 - Version 10 Data File		
< •	Storey: 3 FE Floor Model	03/08/2021 16:06:09	SAP2000 - Version 15 Data File		
< •	Storey: 2 FE Floor Model	09/08/2021 20:37:43			
< •	Storey: 1 FE Floor Model	09/08/2021 20:37:45			
< _	Storey: 0 FE Foundation Model	06/08/2021 17:27:10			
				● OK	×

Wyniki analizy w formacie CSV

Otrzymaliśmy dużą liczbę opinii użytkowników, aby dodać możliwość eksportu wyników analizy w formacie (CSV). W ProtaStructure 2022 udostępniliśmy to, abyś mógł eksportować i interpretować wyniki w niestandardowych arkuszach kalkulacyjnych lub oprogramowaniu niezależnym. Możesz tworzyć pliki CSV za pomocą okna dialogowego "Raport wyników analizy".

Loud Gabes		✓ i-Node	
Load Combinations	Deselect All	✓ j-Node	Deselect All
Dead Loads		✓ N	
 Live Loads 		✓ V2	
 Pattern Live Loads 1 		✓ V3	
Pattern Live Loads 2		✓ M22	
Equiv. Static Seismic X (E+)	✓ M33	
 Equiv. Static Seismic X (E-) 		🗸 Т	
 Equiv. Static Seismic Y (E+)		
 Equiv. Static Seismic Y (E-) 			
G+Q			
G+Qp1			
G+Qp2			
Gc+Qc+Ex+			
Gc+Qc-Ex+			
Gc+Qc+Ex-			
Gc+Qc-Ex-			
Gc+Qc+Ey+			
Gc+Qc-Ey+		Output Type	CEV
Gc+Qc+Ey-		output Type	
Gc+Oc-Ev-		Sort Method	Sort by loading

Rozszerzona biblioteka norm

W ProtaStructure 2022 zaimplementowano następujące nowe kody, a istniejąca obsługa kodu została rozszerzona. Przewodniki projektowe dotyczące obsługi kodu można znaleźć w naszym Centrum pomocy.

- Rumuńskie normy sejsmiczne i obciążenia śniegiem (EC8, P100, EC1)
- Obliczenia obciążenia wiatrem dla kolumbijskiej normy sejsmicznej Title-B Reglamento Colombinao de Construccion Sismo Resistente Titulo B Cargas (NSR-10)
- Peruwiańska norma sejsmiczna, NTE030
- Peruwiańska norma dla betonu (projektowanie belek żelbetowych)
- Brazylijskie przepisy projektowe, NBR (projektowanie belek żelbetowych)
- Indonezyjska norma sejsmiczna 2019 (SNI1726-2019)
- Indonezja Kodeksy projektowe 2019, SNI (projektowanie belek żelbetowych)
- Filipińskie przepisy konstrukcyjne, NSCP (projektowanie belek żelbetowych)

Nowe normy sejsmiczne i obliczenia

Obciążenia sejsmiczne działające na elementy niekonstrukcyjne

Siły działające na elementy niekonstrukcyjne i ich połączenia z budynkiem można obliczyć zgodnie z ASCE07, Eurokodem 8 i TBDY2018. Wystarczy zdefiniować elementy niekonstrukcyjne, a ProtaStructure automatycznie obliczy przyspieszenia i siły kondygnacji w zależności od typu analizy. Kalkulator siły elementu niekonstrukcyjnego znajduje się pod zakładką "Obciążenie" na wstążce.

Projektowanie sejsmicznych separacji

Aby uniknąć uszkodzeń spowodowanych uderzeniami w budynkach, które są budowane obok siebie, należy zapewnić odstępy między konstrukcjami. Procedura obliczeniowa jest dobrze zdefiniowana w normach sejsmicznych. Jeśli chcesz zaprojektować separację sejsmiczną między dwoma budynkami, możesz użyć narzędzia "Projektowanie połączeń sejsmicznych". Znajduje się pod zakładką "Analiza" na wstążce. Za pomocą tego narzędzia można wczytać przemieszczenia istniejącego drugiego modelu ProtaStructure lub ręcznie wprowadzić wartości przemieszczeń drugiego modelu. Obliczenia można wykonać według ASCE07, Eurocode 8 i TBDY2018.

o 🗎 🗅	c 🖡 🔅	Ŧ						ProtaStructure
E Build	ling Setout M	lodelling Loa	ding	Review Ana	lysis Design	Drawin	ngs & Reports BIM	Display Views Help
Analysis Buildi Manager Analy	ng res FE Floor Analysis	FE Raft Foundat Analysis	tion Up Ste Analysis	odate Delete el Bars Steel Ba	e ars Joint Desig	gn Anal	near lysis Existing Buildin Assessment	ng Analytical Axial Load Model Comparison Report Post-Analysis
Seismic Joint Desig	In							- 🗆 X
Storey	X Direction Storey Displacement, Current Model (mm)	X Direction Storey Displacement, Second Model (mm)	X Direction Seismic Joint	Y Direction Storey Displacement, Current Model (mm)	Y Direction Storey Displacement, Second Model (mm)	Y Direction Seismic Joint, (mm)	Structural Parameters	Symbol Value
St: 5 (+16.50m)	9.6	4.4	15.8	17.1	17.1	36.2	Importance Factor	Calculation Details
St: 4 (+13.30m)	7.3	3.2	11.9	13.8	13.8	29.3	Deflection Amplification F	According to ASCE 7-16 12.12.3, "Separations shall allow for the maximum inelastic response
St: 3 (+10.10m)	4.7	2.0	7.7	9.3	9.3	19.6		displacement (δ_M). δ_M shall be determined at critical locations with consideration for translational and
St: 2 (+6.90m)	2.1	0.9	3.4	4.0	4.0	8.4		torsional displacements of the structure including torsional amplifications, where applicable,
St: 1 (+3.70m)	0.1	0.1	0.2	0.3	0.3	0.5		using the following equation:".
								$\delta_{M} = \frac{C_d}{l_s} \frac{\sigma_{max}}{l_s}$ $\hat{\mathbf{\delta}}_{max}$ = maximum elastic displacement at the critical location. According to ASCE 7-16 12.12.3, "Adjacent structures on the same property shall be separated by at least δ_{urr} , determined as follows"
				Use Fi	rst Building's Displace	ements		$\delta_{MT} = \sqrt{\delta_{M1}^2 + \delta_{M2}^2}$
					Second Model			δM_1 and δM_2 = maximum inelastic response displacements of the adjacent structures at their adjacent edges.

Obliczanie przemieszczenia docelowego w analizie zniszczenia

Po wykonaniu analizy zniszczenia, ważnym krokiem jest znalezienie zapotrzebowania, którego wymaga docelowe spektrum kodu (czyli punkt wydajności). Punkt wydajności jest identyfikowany przez docelowe przemieszczenie. Po znalezieniu krzywej wydajności, ProtaStructure 2022 może wykryć docelową wartość przemieszczenia zgodnie z FEMA356, Eurocode 8 i TBDY2018.

Wzmacnianie i ocena z CFRP

ProtaStructure jest teraz w stanie wzmacniać i oceniać elementy belek i słupów włóknami węglowymi (CRFP). Zastosowanie CFRP ma pozytywny wpływ na wytrzymałość na ścinanie i nośność osiową elementów. Efekty te można rozpatrywać zgodnie z normą sejsmiczną TBDY2018. Definicję CFRP można przypisać do elementów za pomocą polecenia "Wzmocnij za pomocą FRP" w menu prawym pod przyciskiem myszy lub na kontekstowej karcie wstążki elementu.

Statyczny i dynamiczny napór gruntu na ściany kondygnacji podziemnych

W ProtaStructure 2022 opracowaliśmy nowy kreator obliczeń naporu gruntu. Może obliczać obciążenia statyczne i dynamiczne gruntu z lub bez zwierciadła wody, w tym obciążenia dodatkowe zgodnie z zasadami geotechnicznymi dla ścian wspornikowych i piwnic. Można zdefiniować dowolną liczbę warstw gleby i zwierciadło wody.

Jeżeli dana ściana jest ścianą kondygnacji podziemnej, obliczenia obciążenia dynamicznego różnią się w zależności od wybranej normy sejsmicznej. Obecnie dla dynamicznych obciążeń piwnicy obsługiwana jest tylko norma sejsmiczna TBDY2018.

Podsumowując, ten kreator może być używany we wszystkich normach jako środek do obliczania obciążeń gruntu na ścianach zgodnie z zasadami geotechnicznymi.

Udoskonalone i rozszerzona kontrola wytrzymałości słupów, belek i połączeń

ProtaStructure 2022 może przeprowadzać silne kontrole zgodnie z ACI318, Eurocode 8 i TBDY2018.

Ulepszone raporty

Oprócz nowego zakresu kodu, raport kontroli belki i ścinania złącza został przepisany od podstaw, aby uwzględnić więcej komponentów wizualnych z inteligentnymi powiadomieniami.

D	Strong Column - Weak Beam Checks				- 🗆 ×			
Print 100% Fit Page 120.00% Immediate Print 100% Fit Width Q Zoon In Immediate Zoom Zoom Show Show Show	PDF To Office To To Meb - Export							
Notifications #eadings © tirror: (Wra + Mru) / (Wri + Mrg) = (32.00 Lm) / (66.22 Lm)0.48 < L2 X	L Image: Constraint of the set of the	-8 9 - 1 - 10 - 1 - 11 - 1 - 12 -	1 + 13 + 1 + 14 + 1 + 15 + 1 +	16 · I · 17 · I · 18 · I	· 19 · 20 ^			
Press: Strong Column Ratio (Vs / Vk) = % 78.3> % 70 √ Press: Strong Column Ratio (Vs / Vk) = % 85.9> % 70 √	Joint Member Sec 88 S8 S8 Storey 2 88 K105 S8 K105 88 K105 K106 K106	otion (cm) Axial Force, N (t) Mome (45/45) 22.1 (45/45) 30.0 (40/60) -	ent Capacity, Mr(+) (t.m) 14.4 15.2 21.3 19.4	eent Capacity, Mr(-) (t.m) 14.4 15.2 23.0 17.5	Shear (t) 1.0			
	ProteStructure v6.0.0	gend and Formulations Va Horizontal th Va Minimum of I ba Thickness of b The effective Aa Section dept Aa The area of th Va The area of th Va The sec of th Va The Section dept Aa The area of th Va The Section dept Va The area of th Va The Section dept Va The Section dept	near force acting on the concrete cc top and bottom shear force of joint confined parts of a wall section, or joint width of column in the considered direc he beam top reinforcement he beam top reinforcement or the column in the considered direct sector.	ore of the joints width of the web of a beam	n			
	Joint Member X D S11 S11-Storey2 S11 S108 S11 K108 K108 K108	Storey Column bj (cm) Value St: 1 (-1.60m) S1 40.0 St: 1 (-1.60m) S2 40.0 St: 1 (-1.60m) S2 40.0 S2 40.0 S2 40.0	/ Vu (t) Confined Beam 0.629 No K101 (l) 6.294 Yes K101 (J) K102 (l) K102 (l)	bw As _{Tep} (cm2) As _B , 40.0 678.58 40.0 2563.54 40.0 2563.54	ot (cm2) V _{kol} (t) 0.629 763.41 763.41 1256.64 14.641	V _e (t) V 35.687 198.150 1	(a.max (t)) 89.333 151.866	Status V X
Strong Column - Weak Beam Checks << < Page: 1. /7 > >> ¥ Error	< 🚺 No Warnings 🌒 Messages: 4	St. 1 (-1.00m) S3 40.0 St. 1 (-1.60m) S8 45.0 St. 2 (+2.30m) S8 45.0 St. 1 (-1.60m) S11 45.0 St. 2 (+2.30m) S11 45.0	Interference No K102 (J) 1.041 Yes K105 (J) 2.111 K106 (I) 7.007 No K108 (J) 5.502 K106 (I)	40.0 2563.54 40.0 2563.54 40.0 678.58 40.0 678.58 40.0 1441.99 40.0 678.58	14.541 1256.64 763.41 763.41 763.41 763.41 763.41 763.41	75.060 1	09.333 192.205 113.062	×

Zoptymalizowany przepływ pracy

Kontrole silnego słupa, słabej belki i połączenia można teraz przeglądać dla pojedynczego słupa i belki podczas projektowania ich zbrojenia. W ten sposób możesz dostroić projekt, jednocześnie obserwując te globalne kontrole sejsmiczne.

Interpretacja wizualna

Status tych sprawdzeń można przejrzeć za pomocą nowych wizualnych opcji.

Automatyczne obliczanie obciążeń śniegiem

Obciążenia śniegiem można automatycznie obliczyć zgodnie z normą EN1991-1-3 (kod bazowy i załącznik rumuński) oraz normami obciążenia TS498.

Nowe możliwości modelowania

Parametryczne elementy stalowe kopuły

Możesz teraz wstawiać stalowe elementy kopuły do swoich modeli za pomocą wysoce parametrycznego kreatora. Kopuły można wstawiać poprzez wskazanie dwóch punktów definiujących ich średnicę lub poprzez wskazanie otworu w płycie.

Można również zaprojektować stalowe ramy kopułowe.

Zakrzywione i łukowe elementy ramy

Teraz można wstawiać elementy ramy, które są zakrzywione na płaszczyźnie poziomej, pionowej lub dowolnie nachylonej. Aby zdefiniować takie ramy:

- 1. Wybierz opcję "zakrzywione" w oknie właściwości ramy,
- 2. Wybierz dwa punkty na ekranie i określ odległość wierzchołka.
- 3. Wprowadź kąt nachylenia, aby zmienić orientację 3D elementu ramy.

Dzielenie i łączenie belek i elementów ramowych

Belki współliniowe i elementy ramy można teraz łączyć/dzielić w celu łatwiejszej modyfikacji modelu

Ulepszenia dla stężeń

Zostały wprowadzone ulepszenia w generowaniu i wstawianiu stężeń w ProtaStructure.

- 1. Płaszczyzna normalna jest teraz wyświetlana w widoku 3D. Pomoże Ci to zwizualizować i zlokalizować ramę.
- 2. Połączone elementy są pokazane w sposób półprzezroczysty dla lepszej prezentacji.
- 3. Wyświetlane są etykiety ramek, a końce ramek są zaznaczone w widoku 3D.
- 4. Przesunięcia końcowe i obroty w płaszczyźnie każdej ramy tworzącej usztywnienie można regulować niezależnie.

Rozszerzona biblioteka przekroi stalowych

Baza danych profili stalowych została rozszerzona o profile wietnamskie i malezyjskie profile Z i C o wysokiej wytrzymałości.

Nowe możliwości interpretacji wizualnej

Następujące nowe elementy wizualnego przedstawienia są teraz dostępne w ProtaStructure 2022:

- 1. Silna słup słaba belka status
- 2. Status połączenie ścinanego
- 3. Status oceny elementów

Nowa metoda wstawiania płyty: Wskaż zamkniętą obwiednię płyty

Płyty można teraz wstawiać, wybierając zamkniętą linię krawędzi płyty na ekranie.

- 1. W oknie właściwości płyty wybierz opcję "Wskaż zamkniętą obwiednię płyty" i wskaż obwiednię na ekranie.
- Alternatywnie możesz wybrać opcję "Obszar belek" i wskazać punkt wewnątrz zamkniętego obszaru płyty. W obu metodach nie potrzebujesz osi.

× <-	Beam Region	~
	Axis Region	
	Beam Region	
🗸 Update	Pick Axis	
	Pick Points	-
	Pick Closed Slab Ed	lge

Type: Norma

e:

h:

e-z

I-End 1-End

в

+ *=

=

38F L=6

~

0.8 ft 0.0 ft

1.6 ft

0.0 ft

1

Dostosowanie i nowe funkcje w systemie jednostek

Wsparcie dla jednostek imperialnych

Jednostki imperialne mogą być teraz używane podczas modelowania, analizy, projektowania, dokumentacji, przeglądu wyników i detalowania.

a-a-a

1' 8 11/16"

1 - 1

\C

ProtaStructure 2022 oferuje trzy wstępnie ustawione systemy jednostek, które są szeroko stosowane przez inżynierów budownictwa na całym świecie, a mianowicie SI, MKS i Imperial. System jednostek jest automatycznie dostosowywany na podstawie wybranego szablonu i może być później zmieniony lub dostrojony przez użytkownika. Aby sterować jednostkami, po prostu przejdź do menu Ustawienia > Jednostka i format.

-3.61

3

2' 1 5/8" 2' 1 5/8"

1C14 1.64x0.82

4'1

5/16

Więcej szczegółów: znaczniki poziomu, długość analizy i jednostki przemieszczenia

Nowa pozycja wyboru jednostki, "Poziom", została wprowadzona w ProtaStructure 2022. W wyniku opinii użytkowników jednostka oznaczenia poziomu została odróżniona od jednostki długości elementu.

Options								
م Search Settings	Variable	Unit	Field Width	No. of Decimals	Format Control	F-Format	E-Format	
O ProtaStructure Environment O ProtaDetails Environment	[Editor]	in	10	1	Stdi E. Biai E	********	0.0005.100	^
Project Preferences wo Unit and Format	Level	ft	10	1	Std: F, Big: E	#######0.0	0.000E+00	
Label	[Analysis]							

Poza tym jednostki "Długość" i "Przemieszczenie" użyte w analizie są również narażone na wybór użytkownika. Możesz zmienić te jednostki w dowolnym momencie, gdy chcesz zobaczyć wyniki analizy w żądanych jednostkach. W ProtaStructure 2022 analiza odbywa się ze stałymi jednostkami wewnętrznymi, więc nie musisz powtarzać i aktualizować analizy po zmianie dowolnej jednostki.

Ważna uwaga:

Obecnie jedynym ograniczeniem są do tego raporty po analizie, które są tworzone podczas analizy. Będziesz musiał powtórzyć analizę, aby zobaczyć te raporty we właściwych jednostkach po zmianie jednostek długości analizy i przemieszczenia.

Ulepszenia w kwestii materiałów

Nieograniczone znaki adnotacji zbrojenia

Usunięto ograniczenie znaków opisu zbrojenia. Dla symboli zbrojenia można określić dowolny ciąg.

: 4077.47 kg/cm2
: 0.00 kg/cm2
: 0.00 kg/cm2
: 1.15
: DB
: Type 2

Imperialne etykiety zbrojeniowe do projektowania metrycznego

Każdej klasie materiału prętów zbrojeniowych można indywidualnie przypisać oznaczenie imperialne lub SI. Jako wymóg w niektórych praktykach krajowych, w ProtaStructure 2022 oddzieliliśmy użycie jednostek imperialnych i przypisanie imperialnych materiałów zbrojeniowych, aby umożliwić naszym użytkownikom definiowanie materiałów zbrojeniowych (i adnotacji) w jednostkach imperialnych, podczas gdy reszta programu używa jednostek metrycznych.

Nowy interfejs dla materiałów zbrojeniowych i dostępności średnic

W wyniku wprowadzenia jednostek imperialnych i klas imperialnych prętów zbrojeniowych potrzebny był nowy interfejs i tok pracy do określania dostępności średnicy prętów zbrojeniowych.

C25 C25 C25 C25		<u>\$420</u> <u>\$420</u> <u>\$420</u> <u>\$420</u> <u>\$420</u> <u>\$420</u>		
C25 C25		<u>\$420</u> <u>\$420</u> <u>\$420</u> \$420		
<u>C25</u> <u>C25</u>		<u>5420</u> <u>5420</u>		
C25 C25		<u>5420</u>		
<u>C25</u>		\$420		
C25		3420		
Rib <u>C25</u>				
		<u>5420</u>		
<u>S275</u>				
<u>S275</u>				
<u>S235</u>				
	\$275 \$275 \$235 \$235 \$235 \$235 \$235 \$235	S275 S275 S235 S235 S235 S235 S235 S235	<u>\$420</u> <u>\$275</u> <u>\$225</u> <u>\$225</u> <u>\$225</u> <u>\$225</u> <u>\$225</u> <u>\$225</u> <u>\$225</u> <u>\$225</u> <u>\$225</u> <u>\$225</u> <u>\$225</u>	5420 5275 5275 5235 5235 5235 5235 5235

Po pierwsze, nie zobaczysz już kolumny Średnice w oknie dialogowym Materiał.

Wyboru średnicy pręta zbrojeniowego można dokonać za pomocą przycisku "Edytuj..." w oknie dialogowym Właściwości materiału zbrojenia.

:	SD40 (Deformed 255, 0, 0 29007547.5 psi 11156737.9 psi 0.30 0.00001200 (1/	Bar)		~	
:	255, 0, 0 29007547.5 psi 11156737.9 psi 0.30 0.00001200 (1/5			•	
:	29007547.5 psi 11156737.9 psi 0.30 0.00001200 (1/ ⁴				
:	29007547.5 psi 11156737.9 psi 0.30 0.00001200 (1/5				
:	11156737.9 psi 0.30 0.00001200 (1/5				
:	0.30				
:	0.00001200 (1/9		: 0.30		
	Thermal Expansion Coeff. : 0.00001200 (1/°C)				
Unit Weight : 0.490 kipf/ft3					
Minimum Yield Strength : 58015.10 psi Ultimate Strength (Fu) : 0.00 psi					
:	0.00 psi				
:	1.15				
:	D				
:	Type 2			`	
:					
:					
	Edit				
	: : : : : : : : : : : : : : : : : : : :	: 58015.10 psi : 0.00 psi : 0.00 psi : 1.15 : D : Type 2 : : Edt	: 58015.10 psi : 0.00 psi : 1.00 psi : 1.15 : D : Type 2 :	: S8015.10 psi : 0.00 psi : 0.00 psi : 1.15 : D : Type 2 : : Edit	

Column	Label	Diameter (mm)	Area (mm2)	l)		0		m	\mathcal{D}	6	H+	Ť	G.
Wall	8	8.0	50.266					~					Г
Beam	10	10.0	78.54				~	~	~	~	~	~	
Slab	12	12.0	113.097		~	~	~	~	~	~	~	~	
RID Slab	14	14.0	153.938	~	~	~	~	~	~	~			F
Lioks	16	16.0	201.062	~	~	~	~	~	~	~	~	~	
Longitudinal Web Bar	18	18.0	254.469		~	~	~	~	~	~	~	~	
Horizontal Web Bar	20	20.0	314.159	~	~	~	~	~	~	~	~	~	
Generic	22	22.0	380.133		~	~	~	~	~	~	~	~	
	24	24.0	452.389		~	~	~	~	~	~	~	~	
	25	25.0	490.874										
	26	26.0	530.929	~	~	~	~	~	~	~	~	~	
	28	28.0	615.752	~	~	~	~	~	~	~	~	~	
	30	30.0	706.858	~	~	~	~	~	~	~	~	~	
	32	32.0	804.248	~	~	~	~	~	~	~	~	~	
	34	34.0	907.92	~	~	~	~	~	\checkmark	\checkmark	~	~	
	36	36.0	1017.876	 Image: A start of the start of	~	~	~	~	\checkmark	~	~	~	
	38	38.0	1134.115	\checkmark	~	~	~	~	\checkmark	~	~	\checkmark	
	40	40.0	1256.637	 Image: A start of the start of	~	\checkmark	~	~	\checkmark	~	~	~	
	42	42.0	1385.442	 Image: A start of the start of	~	~	~	~	~	~	~	~	
	44	44.0	1520.531	 Image: A start of the start of	~	~	~	~	~	~	~	~	
	46	46.0	1661.903	~	~	\checkmark	~	\checkmark	\checkmark	\checkmark	~	\checkmark	
Show All	48	48.0	1809.557	~	~	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	~	\checkmark	
						_	_	_	_	_	-	-	

Właściwości betonu zależne od czasu

W ProtaStructure 2022 wprowadzono zmienność właściwości betonu zależnych od czasu (elastyczność, pełzanie i skurcz).

Przewidywanie pełzania w konstrukcjach żelbetowych nadal utrzymuje swoją niepewność, chociaż opracowywane są nowe, wysoce parametryczne modele. Złożoność wynika głównie z samego materiału i problemu oceny odkształceń zależnych od czasu i utraty sił sprężających (jeśli istnieją), które zwykle nie są uwzględniane w analizie strukturalnej. Tę niepewność i złożoność przewidywania pełzania można w pewnym stopniu rozwiązać poprzez dostosowanie procedur normowych, które dają ogólne wskazówki.

W ProtaStructure można używać modeli czasowych określonych w FIB Model Code 90 i EN1992-1-1:2004. Te modele czasowe są szczególnie używane w analizie konstrukcji etapowych. Odkształcenia

pełzania i skurczu są obliczane i uwzględniane w analizie w zależności od czasu między etapami i po zakończeniu budowy.

Parametry zależne od czasu i etapowe dane konstrukcyjne są również przesyłane do oprogramowania analitycznego ogólnego przeznaczenia, w tym SAP2000.

Aby określić te parametry:

- 1. Otwórz okno dialogowe właściwości materiału betonu.
- 2. Kliknij przycisk "Właściwości zależne od czasu...".

Concrete		
C173	General	
C208	Material Name	: C300
C240	Matural Calue	
C280	Material Color	: 192, 192, 192
C300	Mechanical Properties	
C320	Modulus of Elasticity	: 3733706.5 psi
C400	Shear Modulus	1555703.8 pri
C500		. 1353763.6 par
C600	Poisson's Ratio	: 0.20
	Thermal Expansion Coeff.	: 0.00005000 (1/°C)
	Unit Weight	: 0.150 kipf/ft3
	Design Parameters	
	Characteristic Compressive Strength (Fck)	: 4351.13 psi
	Characteristic Tensile Strength (Fctk)	: 278.47 psi
	Material Coeff	: 1.50
	Time Dependent Properties	
	Time Model	: CEB FIB 90
	Compressive Strength and Stiffness	: 0.000
	Creep	: 0.000
	Shrinkage	: 0.000
ф Х		
Apply to all members of this materia	I class in this storey Time Dependent Propertie	es 🗸 OK 🗶 Cancel

3. Zaznacz "Opcje zależności czasowej", które chcesz uwzględnić w analizie konstrukcji etapowej. Jeśli chcesz częściowo uwzględnić wpływ tych parametrów, możesz wprowadzić wartości z zakresu od 0 do 1. Wpisanie "0" lub odznaczenie odpowiedniej opcji spowoduje dezaktywację parametru.

te Dependence Options						Select Item to	Plot Creep C	oefficient, ø(t	, t0)	
Compressive Strength and Stiffness (F)	Eactor	4.8								
Creen	1.0	4.5								-
Shrinkage	1.0	4.2			_					
		3.9	_							
mmon Parameters		3.6	/							
Time Model:	CEB FIB 90 V	Q 3.3	_							
Cement Type:	Class N 🗸 🗸	, φ(t,	·							
Cement Type Coefficient, s:	0.25	2.7								
Cement Type Coefficient, a:	0.0	Dilla 2.4								
Relative Humidity, %:	40 %	G 10								
Age of Concrete at Start of Applied Load, t0:	0 days	8 I								
Age of Concrete at Start of Shrinkage, ts:	0 days	1.2								
B FIB 90		0.9								
Cement Type Coefficient, β -sc:	5	0.6								
Aggregate Type:	Sandstone V	0.3								
Aggregate Type Coefficient, a-E:	0.7	0	1000	2000 3	000 4	000 500	0 6000	7000	8000	9000 100
						Time (I	Days)			

- 4. Wybierz "Model czasowy", którego chcesz użyć. Dostępne opcje to CEB FIB 90 i EN1992-1-1:2004.
- 5. Określ inne parametry, takie jak typ cementu, wilgotność względna, początek skurczu i typ kruszywa.
- 6. Modele czasowe zostaną automatycznie uwzględnione w analizie konstrukcji etapowej po przypisaniu edytowanego materiału betonowego do elementów konstrukcyjnych (zwłaszcza słupów i ścian)

Nowe narzędzia do obciążania elementów 3D

Definicje obciążeń na elementach i ich przypisaniach zostały całkowicie przemyślane i opracowane na nowo w ProtaStructure 2022. Nowa struktura obciążenia jest bardziej elastyczna i zapewnia większą swobodę w zakresie definicji obciążeń, orientacji obciążeń, przypisywania przypadków obciążeń, raportowania obciążeń i wizualizacji.

Przypisuj obciążenia w dowolnym kierunku i wizualizuj w 3D

Możesz teraz przypisywać obciążenia do elementów w dowolnym kierunku i dowolnym przypadku obciążenia za pomocą nowego **"Edytora obciążeń"** i wizualizować je w 3D w celu lepszej kontroli.

Wizualizacja obciążeń

Chociaż ProtaStructure miał kilka okien dialogowych i edytorów do wizualizacji obciążeń, nie było możliwe zwizualizowanie ich wszystkich razem w 3D przed analizą budynku.

Dzięki ProtaStructure 2022 możesz zwizualizować obciążenia całej konstrukcji lub jej części.

Przypadki obciążenia dachowego, śniegu i deszczu

W programie ProtaStructure 2022 można automatycznie tworzyć oddzielne przypadki obciążeń (i kombinacje) obciążeń ruchomych dachu, śniegu i deszczu. Podczas gdy obciążenia śniegiem mogą być obliczane automatycznie przez program, inne obciążenia można przypisać ręcznie.

Slab ×	# 5 ♂ ₹
General Loads	Load Types View Options
Self Weight: 2.943 kN/m2	
Room	Thermal Point Full Uniform Partial Load Load Area Load Uniform L
Dead Load: 2.33 kN/m2	Gener Fr
Imp. Load: 2.0 kN/m2 Roof Load: 1.0 kN/m2	
Snow Load: 0.0 kN/m2 Rain Load: 0.0 kN/m2	Q Qp1 Qp2
Slab Does Not Contribute to Floor Diaphragm	S R Y
✓ Update X Close	

Przypadki obciążeń zdefiniowanych przez użytkownika i obciążenia wymuszone

Dzięki nowej platformie możesz teraz tworzyć więcej niż jeden przypadek G i Q i przypisywać do nich obciążenia. W poprzednich wersjach ProtaStructure nasi użytkownicy mogli tworzyć przypadki obciążeń, ale nie mogli przypisywać do nich obciążeń. Te przypadki obciążeń nie są automatycznie uwzględniane w kombinacjach obciążeń. Musisz więc dodać je ręcznie do kombinacji.

Aby zdefiniować nowe dodatkowe przypadki obciążenia stałego i zmiennego:

- 1. Przejdź do menu "Analiza budynku > Analiza wstępna > Kombinacje obciążeń > Przypadki obciążeniowe"
- 2. Wybierz przypadek obciążenia G z listy i kliknij przycisk "Dodaj poniżej"

L	oad.	Cases							
	No	Label	Туре	Pattern	Direction	Eccentricity	Use Cracked Sections	Description	\square
	1	D	↓ _G						^
	2	D1	↓ _G						
I	3	D2	↓ _G						
1	4	Dc	↓G				>		-
	5	L	√q						
	6	L1	√ą						
1	7	Lc	√q				\checkmark		-
	8	Lp1	√q	= _					
	9	Lp2	√q	_=					
	10	Ez	√q				>		
	11	Ex+	→ F		1	+Y	>		\sim
	Add	↓ Below A	+ ↑≕ dd Above	_∕∕ Edit) Dele	< ete	2 Help	✓ X OK Canc	el

- 3. Edytuj nowo utworzony przypadek obciążenia, klikając go dwukrotnie lub klikając przycisk "Edytuj".
- 4. Zmień etykietę i opis.
- 5. Jeżeli chcesz, aby nowy przypadek obciążenia był traktowany jako ciężar własny, jako typ wybierz opcję "Przypadek obciążenia stałego". W ten sposób obciążenia w tym przypadku zostaną automatycznie uwzględnione w obliczeniach masy.

Load Case Editor	
Load Case Type Vertical Load Lateral Load	Load Case Label Load Case Description D1 Equipment Vertical Loads Lateral Loads Thermal Loads Construction Stage
Thermal Load Construction Stage Use Cracked Sections	Dead Load Case
	Define the pattern by entering '1' for loaded spans and '0' for unloaded spans. Leave this field blank for cases that all spans are loaded.
	OK Cancel

Obciążenia ręczne na połączeniach kratownicy

W ProtaStructure kratownice zwykle opierają się obciążeniom pośrednim, które są automatycznie przenoszone z płatwi, okładzin, ram i belek, które są z nimi połączone.

Dzięki ProtaStructure 2022 możesz teraz przypisywać ręczne obciążenia na połączeniach i rozpiętości kratownicy.

Nowe metody analizy i systematyka analizy

Systematyka analiz i zbierania wyników została znacznie ulepszona w ProtaStructure 2022.

Zarządzaj wieloma analizami w tym samym czasie

Analizą budynku, analizą płyt MES i analizą fundamentów MES można teraz zarządzać w jednym oknie dialogowym Menedżera analiz dzięki nowej i elastycznej infrastrukturze analitycznej. Na przykład wyniki analizy płyt/fundamentu i wyniki analizy budynku mogą być przechowywane i zarządzane razem w tym samym projekcie. W ten sposób wyniki można łatwo przełączać i przeglądać w locie.

Użytkownicy mogą sprawdzać istniejący stan analizy dla wszystkich przeprowadzonych analiz za pomocą "Menedżera analiz" na karcie wstążki Analiza. Dowolną wybraną analizę można również usunąć za pomocą tego menu.

Interakcja grunt-konstrukcja

W poprzednich wersjach ProtaStructure analiza interakcji grunt-konstrukcja (budynek na podłożu sprężystym) wymagała iteracyjnego procesu, który wymagał oddzielnej analizy budynku i analizy fundamentów w pierwszym kroku. Analiza budynku musiała zostać wykonana po raz trzeci przy użyciu opcji "Scalony model fundamentu".

W ProtaStructure 2022 tak nie jest. Po utworzeniu fizycznego modelu fundamentu wystarczy rozpocząć analizę za pomocą opcji "Scalony model fundamentu". Nie jest już potrzebny proces iteracyjny.

Analiza etapowa konstrukcji z pełzaniem i skurczem

Analiza konstrukcji etapowej może teraz uwzględniać pełzanie i kurczenie, a także zmiany elastyczności w czasie. W tym celu do właściwości materiałów betonowych wprowadza się "Właściwości zależne od czasu". Więcej informacji można znaleźć w sekcji Właściwości betonu zależne od czasu.

Opcje eksportu modelu analitycznego

Nieznacznie zmieniliśmy interfejs użytkownika "Analiza budynku". Nie będzie już można znaleźć zakładki "Eksport". Opcje eksportu Etabs i SAP2000 zostały teraz przeniesione do zakładki wstążki.

g Review Analysis Design Drawings & Reports BIM Displ	ay Views Help
SAF Import SAF Export Import SAF Export Import SAF Export Import Status	t STL File Export Printer) 3D PDF
BIM Links	Analysis Links
Building Analysis	Building Analysis
Pre-Analysis Model Ontions Analysis Post-Analysis Reports	Pre-Analysis Model Ontions Analysis Post-Analysis Reports
Building Analysis and Design	
₽ Building Model Check ✓ 🕨 Building Analysis	Analysis Results
Analysis Type: Equivalent Static Earthquake Load Method	Display Analytical Model
Number of Modes= 6 Analysis Date: 22/07/2021 15:36:38	Analysis Results Report
Display Analytical Model Refresh the Connectivity Information of All Members Save Foundation Column/Wall Results for Multi-block Combined Foundation Design Making Column Slenderness Check - Column Slenderness Checks Completed - Beam Design Data prepared. Saving Columns and Walls Axial Load Comparison Table is prepared Saving AVM Meth Data	Design Column/Wall Design Beam Reinforcement Design
Saving Columns and Walls Saving Steel Members	- Structural Model Export Options
Building Analysis Completed Successfully. (Total Elapsed Time: 12.43 Seconds) Analysis Completed! v	SAP2000 Analysis Model Export
Axial Load Comparison Report	The data files for the above structural analysis programs can be created after the completion of the Building analysis.
Building Model will be merged with the FE Foundation Model when Building Analysis is repeated.	Building Model will be merged with the FE Foundation Model when Building Analysis is repeated.
Codes: TS500-2000, TSC 2016 (LRFD), TS 498 TBDY 2018 TBDY 2018 Cose	Codes: TSS00-2000, TSC 2016 (LRFD), TS 498 TBDV 2018 Relp F1 Close

Oprócz powyższego w procesie analizy wprowadzane są ulepszenia i optymalizacje przepływu pracy i wiadomości. Komunikaty analizy pojawiają się teraz na samej karcie Analiza.

Analiza postprocesorowa

W aplikacji APP wprowadzono wiele ulepszeń, aby uwzględnić zmiany w systematyce analiz wyjaśnione powyżej.

Pojedynczy zintegrowany postprocesor dla wszystkich wyników analizy

Pojedynczy postprocesor analizy dla modułów analizy płyt i konstrukcji MES został opracowany w ProtaStructure 2022. Będziesz mógł sprawdzać i przeglądać modele analityczne i wyniki za pomocą jednego interfejsu. Aby wyświetlić model analityczny:

1. Kliknij przycisk "Model analityczny" na karcie wstążki Analiza, aby otworzyć analizę w postprocesie.

🏮 📄 भ M 🏦 🐵 🗐 🔻	Pro
Building Setout Modelling Loading Review Analysis Design Drawings & Reports BIM Display Views Help	
Analysis Building FE Floor FE Baft Foundation Update Delete Seismic Nonlinear Existing Building Analysis Model	_
Manager Analysis Analysis Analysis Steel Bars Steel Bars Joint Design Analysis Assessment Moder FE Storey and Foundation Moder	ls

- 2. Jeśli wykonałeś tylko "Analizę budynku", kliknięcie przycisku "Model analityczny" otworzy bezpośrednio okno post-procesora analizy.
- 3. Jeśli jednak wykonałeś również analizy MES płyty lub fundamentu, kliknięcie przycisku "Model analityczny" spowoduje wyświetlenie dwóch opcji:
 - Model analityczny budynku
 - Model analityczny płyt I fundamentów MES

Analiza płyt MES a analiza budynków w post-procesie

Istnieją niewielkie różnice między trybem post-procesu płyt MES a budynkiem.

- 1. Ponieważ Analiza płyt MES jest wykonywana tylko przy obciążeniach pionowych, w trybie przetwarzania końcowego płyt MES widoczne będą tylko przypadki i kombinacje obciążeń pionowych. Podczas gdy globalna analiza budynku uwzględnia wszystkie kombinacje, więc lista kombinacji będzie zawierać wszystkie przypadki i kombinacje w trybie przetwarzania końcowego analizy budynku.
- 2. Lista kondygnacji działa jako "Wybór kondygnacji" w trybie przetwarzania końcowego MES płyt. Innymi słowy, możesz przełączać się między wynikami pięter, po prostu klikając odpowiednią kondygnację na liście. Z drugiej strony, ta lista działa jedynie jako filtr do ukrywania i pokazywania elementów analitycznych wybranej kondygnacji.

- 3. Jak jest używany? W trybie post-procesu MES płyt, zamiast pokazywać/ukrywać kondygnacje na liście, można przełączać się między modelami MES wybranych kondygnacji. Symbol strzałki w prawo ">>>" wskazuje aktualnie wybrane piętro. Znak kontrolny "?" oznacza, że istnieje prawidłowa analiza MES dla tego piętra, a znak krzyża "X" oznacza, że przeprowadzono analizę MES, która nie jest już ważna. Jeśli analiza MES nie została przeprowadzona dla określonego piętra, nadal będzie wyświetlana, jednak zostanie wyłączona na liście.
- 4. W obu trybach post-procesora można badać przemieszczenia, wykresy dla elementów i płyt stropowych, kontury powłok pod kątem różnych efektów itp.

Building Analysis Post-Processing Mode: Pay attention to Storeys Filter and Combination List

FE Floor Analysis Post-Processing Mode: Pay Attention to Storey Selector and Combination List

Oddzielny filtr dla kondygnacji posadowienia

Kondygnacja fundamentowa jest teraz dodawana jako osobny filtr w post-procesorze analizy budynku.

Filter	д
Storeys	*
All Storevs	
Storey: 0 (-0.80	m) 🗌
Storey: 1 (Basem	ent) 🗸
Storey: 2 (+5.70	m, Si
Storey: 3 (+8.70	m, Si
Storey: 4 (+11.7	'0m)
Storey: 5 (Roof)	
Axes	*

Zunifikowany silnik MES

W poprzednich wersjach ProtaStructure silnik MES używany do analizy budynku był inny niż ten używany do analizy płyt MES. Dzięki naszej nowej infrastrukturze silnik jest ujednolicony z dodatkowymi ulepszeniami i optymalizacjami.

Okno wyników szczegółowych.

Podświetlanie powłoki

Elementy powłokowe są podświetlane, gdy znajduje się nad nimi kursor myszy. Pojawią się okienka podpowiedzi zawierające informacje i łączności, a także wyniki analizy dla wybranego efektu.

Powiększenie węzła

Węzły są powiększane, gdy najeżdża na nie kursor mysz, aby ujawnić informacje i wyniki analizy.

Schematy płyt stropowych

Diagramy pasm stropów mogą być wyświetlane zarówno w trybie przetwarzania końcowego Analiza budynku, jak i w trybie przetwarzania końcowego płyt MES. Szczegółowe informacje można znaleźć w tytule wykresy płyt stropowych.

- 1. Przycisk "Diagramy" w grupie wstążki "Pasma stropowe" jest domyślnie wyłączony. Musisz wybrać pasm stropu na widoku lub za pomocą listy pasm stropu w tej samej grupie wstążki. Lista pasm płyty umożliwia szybkie wybranie wszystkich pasm w kierunkach X i Y.
- 2. Możesz również kliknąć pasmo prawym przyciskiem myszy i wyświetlić szczegóły

Nowe możliwości w projektowaniu elementów

Rozszerzony zakres norm dla projektowania belek żelbetowych

Poniższe kody są zaimplementowane do projektowania belek żelbetowych w ProtaStructure 2022. Przewodniki projektowe dotyczące obsługi kodów można znaleźć w naszym Centrum pomocy.

- Peruwiańska norma dotycząca betonu (projektowanie belek żelbetowych)
- Brazylijskie przepisy projektowe, NBR (projektowanie belek RC)
- Indonezyjskie przepisy projektowe 2019, SNI (projektowanie belek RC)
- Filipińskie przepisy konstrukcyjne, NSCP (projektowanie belek żelbetowych)

Nowe wzory zbrojenia belek

W ProtaStructure 2022 opracowaliśmy dość elastyczny system tworzenia wzorów prętów zbrojeniowych, który pozwala nam dokładnie i wydajnie integrować niestandardowe wzory. Sam edytor wzorców nie jest udostępniany naszym użytkownikom, ale będziesz mógł skorzystać z jego istotnych zalet.

Wprowadziliśmy kilka gotowych wzorów zbrojenia, które będą odpowiadać potrzebom projektowania belek. Wzorce te wynikają z żądań użytkowników i są dostępne w dystrybucji ProtaStructure. Wzory można przeglądać za pomocą menu "Opcje > Belka > Wzory zbrojenia".

Options				
Search Settings P	Rebar Patterns	Rebar Layers	Layer Information	
ProtaStructure Environment	Rebar Pattern	Rebar Layer	Field	Value
ProtaDetails Environment	Bent-Up Pattern	Hanger Bar ^	Label	Top Bar
	Standard Pattern No 1	Top Bar	Туре	Top Bar
Project Preferences	Standard Pattern No 2	Support Top Bar	Default Rebar Row	BaratRow 1 ✓
🚛 Unit and Format	Standard Pattern No 3	Bent-Up 3	Default Left Extension	Extend Left to 0.25L
▶ 🚟 Kabel	Bent-Up Pattern(M)	Bent-Up 2	Default Right Extension	Extend Right to 0.25L 🗸
Codes	Top2Bot2Sups1	Bent-Up 1		
	Top2Bot2Sups2	Bottom Bar		
Column & Shearwall	India Rebar Pattern	Support Bottom Bar		
🔺 🖉 Beam	Thailand Rebar Pattern	Web Bar 🗸		
Design	Sample Drawing			
Parameters				
Rebar Patterns	III <u>1</u> .			
Steel Bar Selection				
Curtailment				╤╤┲╙ <u>┲</u> ╙┲╙┲╴║╿
Detail Drawings				
Detailing				
	P P			'uuu
Chains	ſ.	- Q		
Stairs		-Dec		
Steel Settings	F			1
Analytical Model Settings	Y			
P Phy Analytical Ploter Securitys				
- Scales				
Bebar				
b c Plan Details				
Template Management	Beam Type: Floor Beam	s v		Span No: 🔵 1 💿 2 🔵 3
			Help	F1 OK Cancel

Poniżej znajduje się krótki przewodnik dotyczący korzystania z wzorów zbrojenia:

- 1. Wzory zbrojenia różnią się dla typów belek stropowych, żebrowych i fundamentowych. Można to zmienić za pomocą listy "Typ belki" na dole okna.
- 2. Dynamiczny rysunek na żywo przedstawia wybrane opcje w interfejsie użytkownika w celu łatwego przeglądania. Ten przegląd można dostosować do maksymalnie trzech przęseł.
- 3. Etykieta i rodzaj warstw są stałe i nie można ich edytować. Warstwy stanowią podstawę systemu wzorów. Można je również interpretować jako typy prętów w przekroju belki, takie jak górny pręt, górny pręt podporowy, zagięty pręt, dolny pręt, dolny pręt podporowy itd.
- 4. Kliknij jedną z warstw zbrojenia. Ustawienia wybranej warstwy zostaną wyświetlone po prawej stronie. Domyślny wiersz zbrojenia określa, gdzie ta warstwa zbrojenia (na przykład górny pas) ma być początkowo umieszczona. Jeśli jest to ustawione na 1, a inny górny wiersz również na 1, algorytm próbuje umieścić wszystkie w pierwszym rzędzie od góry.
- 5. Jeśli algorytm nie umieści wszystkich słupków w pierwszym rzędzie, to umieści górny słupek z opcjami "Rozciągnij od lewej do skróconego" lub "Rozciągnij od prawej do skróconego" w drugim rzędzie. Jeśli "Domyślny rząd zbrojenia" jest ustawiony na 2, to zbrojenie jest umieszczane bezpośrednio w drugim rzędzie.
- 6. ProtaStructure udostępnia do 3 domyślnych wierszy, nie oznacza to jednak, że liczba wierszy jest ograniczona. Są to tylko domyślne wiersze i jak wyjaśniono powyżej, o rzeczywistym wierszu decyduje algorytm. Oznacza to, że jeśli masz belkę o wąskiej szerokości, możesz mieć nawet 6 rzędów górnych belek, chociaż masz tylko 1 warstwę górną belki.
- 7. Ustaw domyślne prawe i lewe zakłady dla wybranego zbrojenia.

Zmodyfikowany edytor zbrojenia belki

Ponieważ teraz można dodawać nieskończoną liczbę warstw zbrojenia, musieliśmy zmodyfikować interfejs. Wskaźniki minimalna powierzchnia zbrojenia i odstępy są przesunięte na górę, aby umożliwić grupom zbrojenia rozszerzenie w razie potrzeby.

Usprawnienia w wykresach sił elementów

Słupy, belki i elementy ramy "Schematy projektowe" mają teraz opcję wyświetlania wyników analizy z "Analizy budynku", "Analizy płyt MES" lub "Połączonych" wyników tych dwóch. W trybie "Scalone" wyniki przypadków obciążenia pionowego są używane z "Analizy płyt MES", podczas gdy pozostałe wyniki przypadków obciążeń są zbierane z "Analizy budynku". Te opcje są wyświetlane tylko wtedy, gdy przeprowadzana jest analiza "MES"...

Nowy interfejs projektowania dla płyt i fundamentów

Opracowano nowy interfejs projektowania batch-mode, w którym można zobaczyć status projektu płyt, edytować i kopiować/wklejać pręty zbrojeniowe między płytami.

₩ = Design							Slab Ana	alysis and Des	gn		-	×
₩¥		5	÷@-	7	Ē	Pa	aste Bars					
Interactive Design	(Batch Mode)	Parar	ngs and meters	Filter Axes	Copy Bars	🖺 Pa	iste Bars to All	Table	Design Report			
	Design				Edit			Report	s			^
Label		5	Slabs				Design Status	Print	Re	bars		
X1		(D201				 Image: A set of the set of the					
X2		(D202				✓					
Y2		(D202 D201				 	\checkmark				
Y2		(D101				 Image: A second s	\checkmark	10	ø8/400 + 10ø8/400 + 10ø8/400 + 10ø8/400		
Y3		1	D102 D101				 	\checkmark				

Projektowanie kopuł stalowych

Wymiarowanie poszczególnych elementów w stalowej kopule można wykonać w ProtaStructure 2022.

Sprawdź projekt pod kątem strzemion słupów zdefiniowanych przez użytkownika

ProtaStructure sprawdza teraz, czy strzemiona zdefiniowane przez użytkownika są wystarczające zgodnie z wybranym kodem projektowania betonu. Domyślnie ProtaStructure automatycznie oblicza średnicę i rozstaw strzemion w zależności od ustawień użytkownika. Możesz jednak chcieć dokonać optymalizacji i dostosowań w swoim projekcie. Aby wprowadzić i sprawdzić strzemiona zdefiniowane przez użytkownika:

• Przejdź do zakładki "Ścinanie" w oknie dialogowym projektowania słupa.

- Aby zmienić automatycznie obliczone wartości, zaznacz pole wyboru "Edytuj" i wprowadź nowe wartości średnicy i odstępu.
- ProtaStructure sprawdzi dostarczone strzemiona i wyświetli status projektu na ekranie.
- Jeśli klikniesz OK i zamkniesz okno dialogowe projektowania słupa, status projektu słupa zostanie ustawiony na "Niepowodzenie", jeśli strzemiona nie są wystarczające.
- Ponadto status projektu zostanie ustawiony na "Niepowodzenie", jeśli wymiarowanie słupa batch-mode zostanie wykonane z opcją "Sprawdź istniejące zbrojenie (nie wybieraj ponownie prętów).

b1/b2: 50.0 cm 30.0 e1/e2: 0.0 cm 0.0 L1/L2: 360.0 cm 360.0 Concrete Cover: 2.5 cm Update	cm Steel Ba	rs Links Design	Shear Design Dir:1 5.347 0.000 10.189	Dir:2 4.522 0.000 5.724	ss Settings -Link Span: Support	Ø8 ♥ : Ø8 ♥	Edited 🖌 / [20 cm / 20 cm]
Loading: User Defined Select Marked Combinations as User Defined					No. Calculate	of Link Legs	-2: 4	
C25 / S420	No	N (t)	M11 (t.m)	M22 (t.m)	V1 (t)	V2 (t)	Label	\square
	1 -Top -Bottom	9.042 10.932	0.22	3.20 -1.39	1.274 1.274	0.091 0.091	G+Q	^
	2 -Top -Bottom	9.042 10.932	0.22 -0.10	3.20 -1.39	1.274 1.274	0.091 0.091	G+Qs1	
	3 -Top -Bottom	9.042 10.932	0.22 -0.10	3.20 -1.39	1.274 1.274	0.091 0.091	G+Qs2	
	4 -Top -Bottom	0.148	-1.46 1.81	-1.62 3.98	-4.991 -4.991	-2.771 -2.771	Gc+Qc+Ez+Ex+	
	5 -Top -Bottom	2.766 4.381	1.56 -1.87	2.51 -4.27	5.320 5.320	2.817 2.817	Gc+Qc+Ez-Ex+	
•	6 -Top -Bottom	0.755	-0.87 1.09	-0.65 2.04	-2.571 -2.571	-1.683 -1.683	Gc+Qc+Ez+Ex-	
	7 -Top -Bottom	2.158 3.773	0.97 -1.16	1.54 -2.33	2.900 2.900	1.729 1.729	Gc+Qc+Ez-Ex-	
	8 -Top -Bottom	1.108 2.722	-2.08 2.57	0.15 0.43	-0.555 -0.555	-3.920 -3.920	Gc+Qc+Ez+Ey+	
	9 -Top -Bottom	1.806 3.421	2.18 -2.64	0.74	0.884	3.966 3.966	Gc+Qc+Ez-Ey+	
	10 -Top	0.797	-2.38	-0.34	-1.792	-4.476	Gc+Qc+Ez+Ey-	~

Nowe raporty

W ostatnich latach otrzymaliśmy wiele próśb użytkowników dotyczących raportów, które generujemy w ProtaStructure. Poniższe informacje podsumowują, co nowego zrobiliśmy w naszym systemie raportów i dokumentacji.

Kompleksowe raporty projektowe płyt

Raporty projektowe płyt są teraz bardziej kompleksowe i mogą być tworzone automatycznie w trybie batch-mode.

Zintegrowany raport fundamentów

Opracowywany jest zintegrowany i kompleksowy raport z projektu fundamentów, łączący wszystkie aspekty, takie jak parcie gruntu, kontury, pręty zbrojeniowe, obciążenia elementów itp.

Finite Element Foundation Report		- 🗆 ×
Please Select Load Cases and Combinations to be Reported		
G	General	FE Informations
Gc	✓ Add Notification Summary To the Report	Add Finite Elements Nodes Information
0		
Qc	Add Column/ShearWall Loads Transfered to Foundation	Add Finite Elements Shell Informations
Qp1		
Qp2	Analysis Results Source	Slab Reinforcement Calculations
Ez	O Building Applying Davida	Add Slab Reinforcement Calculations
Ex+		Add Clab Chin Diseason
Ex-	FE Floor Analysis Results	Add Slab Strip Diagrams
Ey+		
Ey-	Contours	Punching Checks
PX Pv		
1 46 + 1 60	✓ Add Base pressure FE Contours	Add Foundation's Punching Shear Control
1.46 + 1.60p1	Add Foundation Design Moments FE Contours	Add Column Location Image
1.4G + 1.6Op2		
1Gc + 1Qc + 0.3Ez + 1Ex+ + 0	Add Required Rebar Area FE Contours (Local)	
1Gc + 1Qc + 0.3Ez - 1Ex+ - 0.0	✓ Add Required Rebar Area EE Contours (Wood-Armer)	
1Gc + 1Qc + 0.3Ez + 1Ex- + 0.		
1Gc + 1Qc + 0.3Ez - 1Ex 0.3		
1Gc + 1Qc + 0.3Ez + 0.3Ex- + V		Select\Deselect All
Select\Deselect All		Generate Report Close

Szczegółowe raporty z wymiarowania belek żelbetowych

Raporty projektowe dla belek żelbetowych zawierają teraz więcej szczegółów, w tym wzory i odniesienia do norm.

Raport obciążeń elementów

Tworzony jest szczegółowy raport, który podsumowuje wszystkie informacje o obciążeniu w modelu. Możesz stworzyć raport z filtrowaniem elementów i przypadków obciążeń.

Raport grubości i typów płyt

W ProtaStructure płyty można projektować głównie na dwa różne sposoby:

- 1. Metoda współczynnika oparta na normie
- 2. Metoda elementów skończonych

W metodach normowych współczynników typy płyt odgrywają ważną rolę w przybliżonym obliczaniu momentu. Płyty są klasyfikowane według ich ciągłych i nieciągłych (lub swobodnych) krawędzi.

Normy dyktują również minimalne wartości grubości płyty, które należy zastosować w projekcie. W ProtaStructure 2022 wprowadziliśmy nowy raport, który podsumowuje typy płyt i wymagania dotyczące minimalnej grubości zgodnie z kodami TS. Implementacje w USA i Eurokodzie zostaną dodane.

Dostęp do tego raportu można uzyskać, klikając przycisk "Sprawdź grubość płyty" znajdujący się na karcie wstążki.

	Loading	Review	Analysis	Design	Drawings & Reports	BIM	Display	Views	Help	
s	©	Almost-C	Fix the Drthogonal Axes	Purge Sections	Refresh Connectivit Information	Check Sla Thicknes	ıb s Ini	Visual terrogation	Design Status	Colu Sect

Raport właściwości elementu

Dostępny jest nowy raport, który podsumowuje warunki zwolnienia końca słupa/belki/ramy, przypisania podpór, lokalizacje złączy i przypisania łożysk.

Dostęp do tego raportu można uzyskać, klikając przycisk "Właściwości elementu" znajdujący się na karcie wstążki.

Structural Members		
	Select All	
Columns	S1 Storey - 1	^
 Beams 	S2 Storey - 1	
	S3 Storey - 1	
	S4 Storey - 1	
	S1 Storey - 2	
	S2 Storey - 2	
	S3 Storey - 2	
	54 Storey - 2	
	S5 Storey - 2	
	S6 Storey - 2	
	S1 Storey - 3	
	S2 Storey - 3	
	55 Storey - 5	
	S5 Storey - 3	
	S6 Storey - 3	
	K01	
Penorte	K101	
	K102	
Element End Releases	K103	
Column Isolator	K104	
	K105	
Column Splice	K106	
Beam Splice	K201	
E France Calina	K202	
 Frame sprice 	K203	~
	K204	

Ulepszony raport wyników analizy

Zarówno wyniki "Analiza budynku", jak i "Analiza płyt i fundamentów MES" są teraz uzyskiwane przy użyciu tego samego interfejsu. Aby uzyskać wyniki analizy MES płyt, przejdź do zakładki "Okno dialogowe analizy MES > Procesy i raporty po analizie". Aby uzyskać wyniki analizy, możesz użyć przycisku "Raport wyników analizy" w sekcji "Rysunki i raporty > Raporty".

Oprócz ulepszeń poprawiających komfort użytkowania, w tej funkcji wprowadzono wiele poprawek i optymalizacji. Na przykład wyniki analizy można zapisać w formacie "CSV".

Load Cases		✓ i-Node	
Load Combinations	Deselect All	✓ j-Node	Deselect All
 Dead Loads 		✓ N	
 Live Loads 		✓ V2	
 Pattern Live Loads 1 		✓ V3	
Pattern Live Loads 2		✓ M22	
Equiv. Static Seismic X (E+)		✓ M33	
 Equiv. Static Seismic X (E-) 		🖌 Т	
Equiv. Static Seismic Y (E+)			
 Equiv. Static Seismic Y (E-) 			
G+Q			
G+Qp1			
G+Qp2			
Gc+Qc+Ex+			
GC+QC-EX+			
GC+QC+Ex-			
GC+QC+Ex-			
		Output Type	CSV 🗸
		Cart Mathad	Part by leading
OUTQUEY-		Sort Method	Sort by loading

Zoptymalizowany raport stopy fundamentowej i pali

Raporty z projektu stóp fundamentowych i oczepów pali zawierają teraz obliczenia krok po kroku i odniesienia do norm.

$\Sigma N = N + TW$					1				
$\Sigma M_{-}M_{+}V_{-}(h_{-}h_{+}) + Ecc. N$					Shear capacity is calculated according to EC-2,				
					(6.2 a) v _{etet} = 0.12 k (100 o f _*)∿(1/3) + (0.15 * 0.2 * f _{*t} * d _* * d = 144.12 k				
ΣMy=My + Vy (h - h	aper) + ECC2 N								
Corner stresses,					$(6.3N) v_{rdo2} = 0.035 (k^{1.5}) (f_{ck} 0.5) + (0.15 0.2 f_{cd} 0.2 k d_y d_z - 220.84 kN)$				
$\sigma_1 = \Sigma N \ / \ L_x L_y - 6 \ \Sigma M_x \ / \ (L_x L_y^2) - 6 \ \Sigma M_y \ / \ (L_x^2 L_y)$					$v_{rdc} = Max(v_{rdc1}, v_{rdc2}) = 220.84 \text{ kN}$				
$\sigma_2 = \Sigma N / L_x L_y + 6 \Sigma$	EM _x / (L _x L _y ²) - 6	ΣMy / (Lx²Ly)							
$\sigma_3 = \Sigma N / L_x L_y + 6 \Sigma$	EM _x / (L _x L _y ²) + 6	δ ΣMy / (L _x ²Ly)			$V_{dx-ef} = \sigma_{ef} d_{vx1} L_y + ((\sigma_{max} - \sigma_{ef}) d_{vx1} L_y / 2)$				
$\sigma_4 = \Sigma N / L_x L_y - 6 \Sigma$	$M_x / (L_x L_y^2) + 6$	$\Sigma M_y / (L_x^2 L_y)$			$V_{dy-cf} = \sigma_{cf} d_{vy1} L_x + ((\sigma_{max} - \sigma_{cf}) d_{vy1} L_x / 2)$				
Comb	ΣN (kN)	ΣMx (kN.m)	ΣMy (kN.m)	σ1 (kN/m2)	$V_{dx \cdot d} = \sigma_{ct} d_{vx2} L_y + ((\sigma_{max} - \sigma_{ct}) d_{vx2} L_y / 2)$				
Comb #1	397.55	4.23	0.38	207.51	$V_{dy-d} = \sigma_{of} d_{vy2} L_x + ((\sigma_{max} - \sigma_{of}) d_{vy2} L_x / 2)$				
Comb #2 Comb #3	397.55	4.23	0.38	207.51	227.41 220.36 200.46				

ProtaDetails 2022

ProtaDetails 2022 na nowo definiuje produktywność dzięki zautomatyzowanym rysunkom szczegółów RC, zarządzaniu arkuszami, ręcznym rysowaniu, obsłudze DWG i rozszerzającej się bibliotece makr

Raport dotyczący zakładu prętów zbrojeniowych i długości zakotwienia

W ProtaDetails 2022 dodaliśmy zupełnie nowy raport, który podsumowuje krok po kroku obliczenia zakładu i długości zakotwień wraz z odniesieniami do kodów. Można go znaleźć w **"ProtaDetails > Design Library > Engineering Utilities > Lap and Anchorage Length"**

Lapped Rebar Ratio :	1	
Section Depth :	400.0 mm	
Concrete Cover :	40.0 mm	
Concrete Type :	Normalweight Concrete V	
Reinforcement Coating :	Uncoated V	
Anchorage Length :	356.52 mm Bar is Under Compression	_
Lap Length :	445.65 mm All Section Under Tension	

Ulepszone zestawienie w przypadku ścian szkieletowych

Przedmiar ilościowy dla ścian jest poprawiony, gdy dokumentacja jest generowane dla wszystkich/wybranych kondygnacji.

Zakłady i łączniki w połączeniach belek drugorzędnych

Gdy belka drugorzędna przechodzi w belkę główną, w obszarze połączenia znajdują się zakłady lub dodatkowe strzemiona są dodawane do tej strefy.

ProtaSteel 2022

ProtaSteel 2022 to przełomowa wersja z 64-bitową architekturą, nowoczesnym interfejsem użytkownika, rozszerzoną biblioteką połączeń, nowymi raportami projektowymi krok po kroku, zmodernizowanymi oknami dialogowymi makr, kreatorami, funkcjami QoL, IntelliConnect i wieloma innymi...

Nowa technologia

64-bitowa architektura z ulepszoną infrastrukturą technologiczną

Nieustannie badamy i inwestujemy w nowe technologie, aby zapewnić najbardziej unikalne i łatwe w użyciu oprogramowanie do inżynierii budowlanej. ProtaSteel 2022 jest teraz kompatybilny z 64bitowymi systemami operacyjnymi. Przyniesie to znaczne korzyści pod względem wydajności i zarządzania dużymi modelami.

Nowy wstążkowy pasek narzędzi

ProtaSteel 2022 wita Cię z przeprojektowanym zupełnie nowym interfejsem użytkownika bez naruszania nawyków użytkowania, standardów branżowych i produktywności. Krzywa uczenia się jest prawie nieobecna dzięki podobnemu układowi i poleceniom, które są szeroko stosowane w branży kreślarskiej i projektowej.

Nowy interfejs użytkownika

Nowy wstążkowy pasek narzędzi jest dostosowany do przepływu pracy projektu i łączy w sobie nową technologię i ergonomię. Nowy interfejs jest ułożony w logiczny sposób, począwszy od modelowania, połączeń stalowych, edycji, przeglądu i integracji BIM.

Nowa galeria makr

Wszystkie makra połączeń są gromadzone i klasyfikowane w nowej "Galerii makr". Najnowsze makra są zawsze wymienione na górze, co ułatwia dostęp.

Nowy raport projektowy: Połączenie podstawy słupa

W ProtaSteel 2022 wprowadzono szczegółowy raport krok po kroku z odniesieniami do norm dla połączenie podstawy słupa.

Raporty z istniejących połączeń

Dodano nowe raporty projektowe. W ten sposób projekt połączeń, które są szeroko stosowane w praktyce, jest prawie w całości wspierany.

Nowe makro: Połączenie kątownikiem belki i słupa

W ProtaSteel 2022 wprowadzono połączenie belki ze słupem przy użyciu kątownika. To makro obsługuje szczegółowy raport kontroli projektu (podobny do połączenia kątownikiem belka-belka)

Nowe makro: Połączenie śrubowe płytki końcowej

Wprowadzono połączenie śrubowe blachy końcowej dla profili dwuteowych w ProtaSteel 2022.

Nowe makro: Połączenie podstawy dla przekrojów rurowych

Teraz możesz wstawić połączenie płyty podstawy do kształtowników rurowych w ProtaSteel 2022.

Nowe makro: nieciągłe połączenie skośne

Jako podtyp zwykłego makra połączenia skośnego, możesz teraz wstawić połączenie do belek osadzonych na słupach.

Ulepszona nauka o programie, użyteczność i produktywność

ProtaSteel 2022 zawiera znaczące nowe funkcje i ulepszenia w zakresie użyteczności i produktywności.

Ulepszenia grupowania, filtrowania i wyboru obiektów

Operacja wyboru teraz automatycznie grupuje wybrane obiekty.

Nowa systematyka ustawień dla całego programu

Ustawienia, takie jak domyślne ustawienia makr, filtry modelu, ustawienia arkusza, wartości domyślne obiektu modelu, używane profile, są bardziej spójne w całym oprogramowaniu. Są one podzielone na 3 różne poziomy:

- Ustawienia globalne (domyślne ustawienia)
- Ustawienia firmy
- Ustawienia lokalne (zapisywane w folderze projektu wraz z każdym projektem)

Podczas tworzenia nowego modelu wszystkie ustawienia są kopiowane do folderu danych projektu. W ten sposób, gdy model jest kopiowany na inny komputer, wszystkie ustawienia są z nim zgodne.

Ustawienia z tych 3 poziomów można przywołać we wszystkich oknach dialogowych makr, które umożliwiają zmianę i zapisanie ustawień domyślnych (takich jak profile, ustawienia makr połączeń, ustawienia rysunków częściowych i montażowych, ustawienia arkuszy itp.). Możesz wybrać ustawienia z tych 3 różnych poziomów lub możesz zapisać i użyć własnych ustawień.

System ten został zaprojektowany tak, aby był bardzo podobny do systemu stosowanego w praktyce przemysłowej. Tak więc kolejna luka jest wypełniona w ProtaSteel 2022.

Modernizacja i udoskonalenie interfejsu użytkownika makr

Pola wejściowe w oknach dialogowych makr wyświetlają teraz rzeczywistą wartość używaną w określonym parametrze połączenia, zamiast być puste. Wartości obliczone automatycznie są wyświetlane w kolorze SZARYM, podczas gdy wartości użytkownika, które są wprowadzane, a nie aktualizowane, są wyświetlane w kolorze CZERWONYM. Wartości użytkownika, które są odzwierciedlone w makrze połączenia, są wyświetlane w kolorze CZARNYM. Naszym celem jest stopniowe zastępowanie wszystkich okien dialogowych w ProtaSteel tą technologią z każdą nową wersją.

Nowe kreatory makr automatycznych i ręcznych

Ulepszyliśmy ręczne rysowanie połączeń, dzięki czemu jest teraz łatwiejsze w użyciu. Stworzyliśmy również kreatory krok po kroku, które pomogą Ci szybko utworzyć dowolne połączenie

Ręczne wymiary i uwagi na dokumentacji

Ręczne wymiary i uwagi dodawane są zachowywane w następnym automatycznym procesie generowania. Jest to bardzo ważne z punktu widzenia zachowania ciągłości pracy.

Usprawnienia I ułatwienia w generowaniu dokumentacji projektowej

Zostały wprowadzone usprawnienia w ustawieniach rysunków częściowych i montażowych. Ustawienia są teraz umieszczane bezpośrednio na pasku narzędzi wstążki, aby ułatwić dostęp. Wcześniej znajdowały się w menu po kliknięciu prawym przyciskiem myszy, co jest nieco trudniejsze do znalezienia, szczególnie dla nowych uczniów.

Ulepszenia i uproszczenia w adnotacjach dotyczących śrub i spoin

Opisy śrub i spoin są uproszczone w typowych szczegółach połączeń, aby uzyskać dokładniejsze rysunki.

Kontrola połączenia i raport sił wewnętrznych

Kontrole połączenia uwzględniają teraz każdą kombinację zamiast wartości obwiedni. Siły wewnętrzne elementu dla każdej kombinacji są również wymienione w oknie właściwości.

Generalne ulepszenia stabilności i wydajności

Niezliczone ulepszenia stabilności i wydajności są wdrażane w wyniku procedur kontroli jakości i informacji zwrotnych od użytkowników. Większość ulepszeń została już wprowadzona wraz z aktualizacjami poprzedniej wersji (v2021) przez cały rok. Niektóre z tych ulepszeń są teraz dodane w ProtaStructure 2022. Szczegóły można zobaczyć w sekcji "Informacje o buildzie" w obszarze użytkownika naszej witryny.

Dziękujemy

Dziękujemy za wybranie produktów ProtaStructure Suite.

W firmie Prota naszym nieustannym celem jest dostarczanie przyjaznej dla użytkownika, wiodącej w branży technologii projektowania i dokumentacji budynków

Jeśli masz jakiekolwiek prośby lub pytania dotyczące pomocy technicznej, nie wahaj się z nami skontaktować.

Zespół Prota

ProtaStructure®
Prota Steel [®]
Prota Details [®]
Prota BIM [®]